Refinement was carried out based on all independent reflections. The threshold $I>2 \sigma(I)$ was used only for calculation of the R factor. The hydroxyl H atoms were located from difference syntheses and only displacement parameters were refined, assuming ideal bond lengths ($\mathrm{O}-\mathrm{H} 0.96 \AA$).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku Corporation, 1998). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1531). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G.. Giacovazzo. C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cṛ'st. 27, 435. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation \& Rigaku Corporation (1998). TEXSAN. Single Crystal Structure Analvsis Software. Version 1.9. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381. USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Crist. A24, 351-359.
Reddy, D. S., Ovchinnikov, Y. E., Shishkin, O. V., Struchkov, Y. T. \& Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4085-4089.

Acta Cryst. (1999). C55, 594-596

N-Propylimidazolidinetrione and N-methyl-N^{\prime}-phenylethylimidazolidinetrione

Ryouko Yoshihara, ${ }^{a}$ Hiroyuki Hosomi, ${ }^{a}$ Hiromu Aoyama ${ }^{b}$ and Shigeru Ohba ${ }^{a}$
${ }^{a}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-I4-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{\text {b }}$ Department of Material Chemistry, Faculty of Textile Science and Technology, Shinsyu University, Tokida 3-15-1, Ueda 386-0081, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 1 September 1998; accepted 15 December 1998)

Abstract

In crystals of N-propylimidazolidinetrione, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$, (I), and N-methyl- N^{\prime}-phenylethylimidazolidinetrione, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$, (II), the N-alkyl side chains have trans

conformations. Photoirradiation of (I) gives the N-allyl derivative both in solution and in the solid state. (II) is photoreactive, yielding a tricyclic compound in solution, but not in the solid state. The photostability of (II) in the crystalline state may be due to the reaction cavity which does not allow the N^{\prime}-phenylethyl moiety to make a large conformational change for cyclization.

Comment

The photoreactivities of imidazolidinetriones in solution vary with the substituents on the N atoms (Aoyama et al., 1984). An intramolecular disproportionation reaction occurs for (I) and a cyclization reactions occurs for (II). The intermediate of the reactions seems to be the 1,4-biradical formed by γ-hydrogen abstraction by the α-dicarbonyl group (Aoyama et al., 1984). Recently, the photoreactivities in the solid state have also been investigated for these compounds by one of the authors (HA). The yield of (I^{\prime}) was ca 30% after irradiation for 12 h with a 1000 W high-pressure Hg lamp, but there was no yield of (II^{\prime}). The yields of the photoproducts were estimated via their ${ }^{1} \mathrm{H}$ NMR spectra. The crystal structure analyses have been carried out to investigate the geometrical factors which might determine the reactivity in the solid state. The distances between the carbonyl oxygen, O 3 , and one of the $\gamma-\mathrm{H}$ atoms bonded to C 10 are 3.42 (4) \AA in (I), and $3.17 \AA$ (no standard uncertainty due to a riding model) in (II). The $\mathrm{C} 8=\mathrm{O} 3 \cdots \mathrm{H}$ angles are 74.6 (7) and 76.4°, respectively. Therefore, the conformations in (I) and (II) are both suitable for intramolecular hydrogen abstraction. It is supposed that the reaction of (I) takes place with little structural change, but that of (II) does not because a large conformational change of the ethylphenyl group is not allowed in the crystal. The $\mathrm{C} 6=\mathrm{Ol}$ bond length in (I) is 0.022 (4) A longer than that in (II). This elongation of the carbonyl bond is attributed to the hydrogen bonding of Ol in (I), which does not occur in (II). Similar effects were reported for imidazolidinetrione (Weber \& Craven, 1987).

(I)

(II)

Prismatic crystals of (I) have normal hardness, which may be due to the intermolecular cyclic $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Thin plate-like crystals of (II) are very soft and easily curved. The crystallinity of N-iso-butyl- N^{\prime}-methylimidazolidinetrione, (III), is also poor and the crystals sublime in air. Crystal data for (III): $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{r}=172.18$, monoclinic, $P 2_{1} / a$, $a=8.569$ (6), $b=5.728(5), c=19.601(5) \AA, \beta=$ $101.76(4)^{\circ}, V=941.9(9) \AA^{3}, Z=4$.

Fig. 1. The molecular structures of (a) (I) and (b) (II). Displacement ellipsoids are plotted at the 50% probability level. H atoms are shown as spheres of an arbitrary radius.

Experimental

The crystals of compounds (I) and (II) were prepared by a literature method (Larson et al., 1973) and were grown by slow evaporation of methanol solutions.

Monoclinic
$P 2_{1} / n$
$a=11.503$ (4) \AA
$b=4.975$ (2) \AA
$c=13.304$ (3) \AA
$\beta=99.86(2)^{\circ}$
$V=750.2(4) \AA^{3}$
$Z=4$
$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7R diffractom-
1549 reflections with

eter

$\theta-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.946, T_{\text {max }}=0.978$
2829 measured reflections
2715 independent reflections

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.020$
$\theta_{\text {max }}=32.5^{\circ}$
$h=0 \rightarrow 17$
$k=0 \rightarrow 7$
$l=-20 \rightarrow 20$
3 standard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F
$R=0.047$
$w R=0.087$
$S=1.07$
2715 reflections
132 parameters
All H -atom parameters refined

Cell parameters from 25 reflections
$\theta=14.6-14.9^{\circ}$
$\mu=0.112 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism
$0.6 \times 0.2 \times 0.2 \mathrm{~mm}$ Colourless

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}\right)\right. \\
& \left.+0.00226\left|F_{o}\right|^{2}\right]
\end{aligned}
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

	$1.208(2)$	$\mathrm{N} 5-\mathrm{C} 8$	$1.372(2)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.200(2)$	$\mathrm{N} 5-\mathrm{C} 9$	$1.459(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.205(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.536(2)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.376(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.509(3)$
$\mathrm{N} 4-\mathrm{C} 6$	$1.374(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.505(4)$
$\mathrm{N} 4-\mathrm{C} 7$	$1.390(2)$		
$\mathrm{N} 5-\mathrm{C} 6$	$111.7(1)$	$\mathrm{N} 4-\mathrm{C} 7-\mathrm{C} 8$	$104.4(1)$
$\mathrm{C} 6-\mathrm{N} 4-\mathrm{C} 7$	$111.0(1)$	$\mathrm{N} 5-\mathrm{C} 8-\mathrm{C} 7$	$105.1(1)$
$\mathrm{C} 6-\mathrm{N} 5-\mathrm{C} 8$	$107.8(1)$		
$\mathrm{N} 4-\mathrm{C} 6-\mathrm{N} 5$			
$\mathrm{~N} 5-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-178.9(3)$	$\mathrm{C} 6-\mathrm{N} 5-\mathrm{C} 9-\mathrm{Cl} 0$	$88.3(2)$

Table 2. Hydrogen-bonding geometry ($\left(A^{\circ},^{\circ}\right)$ for (I)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \ldots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} \cdots \cdots \mathrm{O}^{\mathrm{j}}$	$0.92(2)$	$1.97(2)$	$2.881(2)$	$170(2)$

Symmetry code: (i) $-x, 1-y, 1-z$.

Compound (II)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
Mo $K \alpha$ radiation
$M_{r}=232.24$
$\lambda=0.71073 \AA$

Monoclinic
C2/c
$a=49.87$ (2) \AA
$b=5.406$ (3) \AA
$c=8.471(3) \AA$
$\beta=88.66(3)^{\circ}$
$V=2282.9(17) \AA^{3}$
$Z=8$
$D_{x}=1.351 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7R diffractometer
ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.960, T_{\text {max }}=0.990$
2667 measured reflections
2638 independent reflections

Cell parameters from 25 reflections
$\theta=11.8-14.8^{\circ}$
$\mu=0.099 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate
$0.3 \times 0.3 \times 0.1 \mathrm{~mm}$
Colourless
$I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 64$
$k=0 \rightarrow 7$
$l=-11 \rightarrow 11$
3 standard reflections every 150 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}\right) \\
&\left.+0.00265\left|F_{o}\right|^{2}\right] \\
&(\Delta / \sigma)_{\max }=0.02 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1052). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A.. Burla, M. C., Polidori, G. \& Camalli. M. (1994). J. Appl. Cryst. 27, 435436.

Aoyama, H., Ohnota, M., Sakamoto, M. \& Omote, Y. (1984). Tetrahedron Lett. 25, 3327-3330.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, D. B., Arnet, J. F. \& McGlynn, S. P. (1973). J. Am. Chem. Soc. 95, 6928-6935.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Sofiware. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1998). TEXSAN. Single Crystal Structure Analysis Software. Version 1.9. MSC, 3200 Research Forest Drive, The Woodlands. TX 77381, USA.
North. A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Crist. A24. 351-359.
Weber, H.-P. \& Craven. B. M. (1987). Acta Cr.st. B43, 202-209.

Refinement

Refinement on F
$R=0.052$
$w R=0.116$
$S=1.10$
2638 reflections
154 parameters
H -atom parameters constrained

Acta Cryst. (1999). C55, 596-599

3,3,6,6-Tetramethyl-9-(3-nitrophenyl)-3,4,5,6,9,10-hexahydroacridine-1,8(2H,7H)dione

Héctor Novoa de Armas, ${ }^{a} \dagger$ Norbert M. Blaton, ${ }^{b}$ Oswald M. Peeters, ${ }^{b}$ Camiel J. De Ranter, ${ }^{b}$ Margarita Suárez Navarro, ${ }^{\text {c }}$ Yamila Verdecia Reyes, ${ }^{\text {c }}$ Estael Ochoa Rodríguez ${ }^{`}$ and Esperanza Salfrán ${ }^{\text {c }}$
${ }^{a}$ Centro de Química Farmacéutica, Departamento de Análisis, Apartado I6042, La Habana, Cuba, ${ }^{b}$ Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, and "Laboratorio de Síntesis Orgánica, Universidad de La Habana, Apartado 10400, La Habana, Cuba. E-mail: hector.novoa@farm.kuleuven.ac.be
(Received 5 October 1998; accepted 3 December 1998)

Abstract

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$, the central ring adopts a distorted boat conformation, while the two outer rings are almost in ideal envelope conformations.

[^0]In (I), all H atoms were located from difference syntheses. In (II), all H -atom positions were calculated geometrically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$. A riding model was used in their refinement ($\mathrm{C}-\mathrm{H} 0.96 \AA$).

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993). Cell refinement: MSC/AFC Diffractometer Control Software for (I); MSC/AFC Diffractometer Control Software for (II). For both compounds, data reduction: TEXSAN (Molecular Structure Corporation, 1998); program(s) used to solve structures: SIR92 (Altomare et al., 1994); program(s) used to refine structures: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

[^0]: \dagger Present address: Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen. Katholieke Universiteit Leuven. Van Evenstraat 4, B-3000 Leuven. Belgium.

